If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=324
We move all terms to the left:
c^2-(324)=0
a = 1; b = 0; c = -324;
Δ = b2-4ac
Δ = 02-4·1·(-324)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*1}=\frac{-36}{2} =-18 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*1}=\frac{36}{2} =18 $
| 3x+56=6x-5 | | 3|2x+11|=21 | | 9/14c+1/7c=2/3 | | −3/4(8x−12)=5x−2 | | y/3-4=42 | | T-2/t+4=0 | | 9=3k-(-6) | | 6x+6=6x+6= | | -22x+6=28 | | 2m=48.2 | | 0.06(y-4)+0.12y0.12y=0.16y-0.1 | | a/12=-8 | | 6x-10=9- | | 200-5x=50+x | | 9(2a+7=) | | 2(3a+2)=34 | | 1/9z=-5 | | 4=-y/7 | | 8=1/10b | | (7x+34)=(5x+55) | | 11-18-7-3x=7 | | 1/9c=7 | | n(4)=-20 | | 16y-8=48+9y | | -48=6b | | -21=3i | | -9.3(2x-2.8)=+3 | | 7y-9+y+5=28 | | 3x+8x+14+109=180 | | 27=r(3) | | 5w=-9+4w | | 3(j−15)−–8=17 |